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Abstract

The Computational Plant (Cplant) project at Sandia National Laboratories is developing a

large-scale, massively parallel computing resource from a cluster of commodity computing and

networking components. We are combining the bene®ts of commodity cluster computing with

our expertise in designing, developing, using, and maintaining large-scale, massively parallel

processing (MPP) machines. In this paper, we present the design goals of the cluster and an

approach to developing a commodity-based computational resource capable of delivering

performance comparable to production-level MPP machines. We provide a description of the

hardware components of a 96-node Phase I prototype machine and discuss the experiences

with the prototype that led to the hardware choices for a 400-node Phase II production

machine. We give a detailed description of the management and runtime software components

of the cluster and o�er computational performance data as well as performance measurements

of functions that are critical to the management of large systems. Ó 2000 Elsevier Science

B.V. All rights reserved.
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1. Introduction

Using tightly coupled clusters of commodity o�-the-shelf (COTS) personal
computers (PCs) to build a dedicated parallel computing resource has become
popular due to cost/performance bene®ts. Small-scale clusters have shown perfor-
mance comparable to small versions of massively parallel processing (MPP) systems
[26]. While the initial steps toward commodity cluster supercomputing have shown
promise, many obstacles remain for the development of large-scale clusters with the
compute and I/O power required to compete directly with large commercial MPP
systems.

Several e�orts, both in industry and in research institutions, are attempting to
build scalable clusters composed of commodity computing and networking hard-
ware. While these projects address many of the issues relevant to the size and ca-
pability of the targeted systems, many issues and complexities must be addressed to
scale these types of systems to reach Sandia's current one trillion ¯oating point
operations per second (TeraFLOPS) level of compute performance. In this paper, we
present Sandia's approach to constructing a large-scale, MPP machine constructed
from commodity components.

In the following section, we present an overview of the Sandia/Intel TeraFLOPS
(TFLOPS) machine, an MPP representative of the computing capacity and capa-
bility required by Sandia's applications. Section 3 summarizes the shortcomings of
previous commodity cluster projects, and Section 4 discusses the concept and design
of Sandia's approach to building a scalable, high-performance, production quality
cluster. Sections 5 and 6 present an overview of the hardware components of the
prototype and production clusters. Section 7 describes the software components of
the diagnostic and management systems, and Section 8 details the software com-
ponents that compose the scalable runtime system. Performance results of parallel
benchmark codes are presented in Section 9. We conclude with a discussion of future
work and a summary of the key contributions of this research.

2. Sandia/Intel TFLOPS machine

The Sandia/Intel TFLOPS machine is part of the Department of Energy's (DOE)
Accelerated Strategic Computing Initiative (ASCI). TFLOPS is the culmination
of more than 10 years of research and development in massively parallel, high-
performance, distributed memory computing.

2.1. Hardware

The Sandia/Intel TFLOPS machine is composed of more than 9000 Pentium II
Xeon processors connected by a network capable of delivering 800 MB/s bidirec-
tional bandwidth (see [19] for details). The machine has a peak performance of
3.2 TeraFLOPS, and as of November 1999, holds the world record for compute
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performance [16], demonstrating 2.37 TeraFLOPS on the LINPACK [6] benchmark.
This level of performance is required to solve the types of problems that are critical
to Sandia and the ASCI program [1].

2.2. Software

The high-performance operating system on the TFLOPS compute nodes was
designed and developed by Sandia and the University of New Mexico [23] and
ported to the TFLOPS by Intel. The design of this lightweight kernel stems from
earlier experiences in providing a high-performance operating system optimized for
distributed memory, message passing MPPs [12]. A key component of the system
software is a high-performance message passing layer called Portals [21]. Portals are
data structures within the address space of an application that tell the kernel how
message operations should be processed. Portals were one of the earliest attempts to
establish a zero-copy application bypass mechanism for message passing. Using
Portals, messages are delivered directly to the application with no need for appli-
cation-level processing. In particular, Portals does not require an application-level
thread that continually polls the network interface to process messages. Such threads
are typically used in other systems to deliver messages to the correct place based on
®elds in the message. Commodity networking technology has recently begun to re-
alize the bene®ts of decoupling the network from the application processor, with
emerging technologies such as the Virtual Interface Architecture (VIA) [5] and
Scheduled Transfer (ST) [25]. 3

2.3. Partition model

The TFLOPS employs a partition model of resources [8], where each partition
provides access to a specialized resource. Fig. 1 illustrates a typical logical con®g-
uration. The largest portion of the machine is the compute partition, which is
dedicated to delivering processor cycles and interprocessor communications to ap-
plications and ideally runs a lightweight operating system. The service partition
provides a full UNIX environment where users log in to access the compute parti-
tion. Nodes in this partition provide the familiar UNIX shells, tools, and utilities.
Parallel jobs are launched from the service partition into the compute partition.

The TFLOPS is managed as a space-shared resource. Nodes are allocated to a
speci®c job and user. Once allocated, a node can only be used by that user until the
job terminates. The runtime environment supports multiple processes per node, but
this feature is rarely used in practice. Typically a job will need all of the compute,

3 Portals support an application bypass in the sense that when the Portals code is interpreted on a

coprocessor, messages can be delivered to the application without interrupting the execution of the

application. However, unlike current operating system bypass strategies, the Portals implementation

requires full address translation support.
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memory, and communication resources a node can provide. If more compute power
is needed, nodes are added to the compute partition.

2.4. Maintenance and diagnostic system

The TFLOPS has a separate subsystem for maintaining and diagnosing the ma-
chine. The reliability, availability, and serviceability (RAS) system consists of a
separate network of processors that monitor the health of the machine. RAS is used
to identify components of the machine that are failing or have failed, con®gure the
nodes out of the system, and then recon®gure the nodes back into the system after
replacement or repair. For the 1998 calendar year, the TFLOPS incurred only seven
hardware failures that caused the machine to become unusable, and the availability
rating was 98% (disregarding scheduled maintenance). Such an RAS system is
critical for large-scale production systems.

2.5. Limitations

The TFLOPS has proven to be one of the more technically successful e�orts in
massively parallel, high-performance computing. However, large MPP systems have
drawbacks. Future high-performance computing platforms of this magnitude need
to address the following issues.

Custom hardware components are quickly superseded by commodity compo-
nents. The TFLOPS is based on commodity processor technology, but many of the
hardware components were designed and built speci®cally for the TFLOPS. In
particular, the network and RAS systems were designed speci®cally for the TFLOPS.
The use of custom parts signi®cantly increase the cost of the machine, in money as
well as time. The performance of the original 200 MHz Pentium Pro processors in

Fig. 1. Conceptual partition model.

246 R. Brightwell et al. / Parallel Computing 26 (2000) 243±266



the TFLOPS was quickly overcome by that of the Pentium II and Alpha processors.
Commodity networking and I/O bus technology will soon allow for networking
performance to reach the level of the TFLOPS network. In addition, the procure-
ment process for large-scale machines is typically on the order of several months.
The cost of some components can drop dramatically between the time the contract is
®nalized and the machine is delivered.

Volume vendors are not the best organizations to create niche products. High-
performance, massively parallel scienti®c computing continues to be an extremely
small market for volume hardware and software vendors. Companies that target the
mass market may be unwilling and/or unable to address the needs of the scienti®c
community, primarily due to lack of potential revenue.

Large system scalability requires specialized knowledge and research. The success
of the TFLOPS machine was the result of 10 yr of research and development. Much
of the knowledge of how to build systems that can scale to thousands of nodes has
not yet permeated the high-performance computing community as a whole, and
much research remains to be done.

Large-scale systems must grow in size and capability. Otherwise, they risk be-
coming obsolete before becoming fully functional. Hardware and software tech-
nology in the current arena of high-performance computing is evolving rapidly.
Large-scale systems must be able to adapt and evolve with these new technologies in
order to remain a valuable resource.

The applications that require high levels of compute performance will continue to
grow in size, variety, and complexity, and large-scale systems will have to evolve with
these changes. Systems must be able to continually adapt to the environments and
capabilities the applications require.

3. Commodity clusters

The ability of the TFLOPS to scale to more than 4000 nodes has been cited as an
important factor in establishing the feasibility of high-performance commodity
cluster computing [24]. There are numerous projects attempting to construct com-
modity-based clusters as a low-cost alternative to commercial parallel computing
systems (see [4] for several such projects). These projects have made much progress in
establishing a foundation upon which small- and medium-scale clusters can be
based. However, the current state of cluster technology does not support scaling to
the level of compute performance, usability, and reliability of large commercial MPP
systems like the TFLOPS.

In order to build workstation clusters with thousands of nodes, scalability of all
system components is critical. Dependence on non-scalable technologies must be
bounded so the limits of scalability are not approached. When bounding is not
possible, the dependence on non-scalable technology must be eliminated. Network
technologies such as Fast Ethernet, wide-area network protocols such as TCP/IP,
and tools that are built on these protocols, such as Network File System (NFS) and
remote shell (rsh) have inherent scalability limitations that must be addressed.
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Scalability spans every aspect of a large-scale machine. For example, scalability must
be provided to the application, not only through high-speed networking, but also
through a scalable startup mechanism in which compute resources are allocated and
processes are started on thousands of nodes.

The machine must also be managed and maintained in a scalable fashion. The
complexity of administration should not increase signi®cantly as the size of machine
or the number of users increases. For large-scale clusters, e�cient maintenance and
management of the system is at least as important as e�cient use of the system.

Usability of the machine is critical. Users should be able to interact with and use
the machine without any specialized or intimate knowledge of the underlying com-
ponents. That is, users should not be required to know the name of every node in the
cluster. Nor should users be responsible for determining the allocation of the ma-
chine's resources.

Ideally, clusters should be able to support the same types of applications MPPs
support. Current cluster systems support a small number of users and run a small
subset of applications. In order to approach MPP systems, clusters must address the
issues related to making a wide variety of applications run well.

4. Computational plant

The Computational Plant [20] (Cplant) project at Sandia National Laboratories
addresses the above issues relevant to developing, using, and maintaining a massively
parallel commodity-based cluster. It combines the bene®ts of commodity cluster
computing with expertise in designing, developing, using, and maintaining large-
scale, MPP machines. The goal is to provide a commodity-based, large-scale com-
puting resource that not only meets the level of compute performance needed by
Sandia's critical applications, but that also meets the levels of usability and reliability
established by the TFLOPS. We have proposed a new model for the creation of high-
end capability resources. Cplants are built on the design of the TFLOPS system,
from which several key concepts can be derived:
· Large systems must have signi®cant resources dedicated to system monitoring and

system con®guration.
· Large systems should be constructed from independent building blocks.
· Independent building blocks can be partitioned by changing a small number of

system characteristics.
· Large systems should be partitioned into conceptually separate components that

provide specialized functionality.
· Partitions can interact through a limited number of capabilities.

4.1. Conceptual design

In order for a Cplant to be integrated from components available from a variety
of vendors, an architecture that is easily expandable and integratable is needed. The
Cplant architecture consists of scalable units and a support system.
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The de®nition of a scalable unit (SU) is intended to be as non-speci®c as
possible in order to allow a variety of vendors to supply cost-e�ective compo-
nents. The use of the partition model of resource provision [8] allows SUs to
provide a variety of resources, such as service, compute, I/O, and network. Most
of the Cplant resources are likely to be devoted to creating computational nodes,
i.e. nodes which can service distributed memory programs and, at a minimum,
run an MPI process. At least one SU must provide a service capability (i.e., a
direct interface to users from which jobs can be started, monitored, and de-
bugged). SUs can also provide specialized resources, such as enhanced secondary
or tertiary storage and enhanced network capability. A specialized resource may
appear as a service that can be called from an application code within a compute
partition and/or be called via a command line argument by users through a
service partition.

SUs must also respond to the management queries and con®guration commands
de®ned for the support system. For example, it is desirable that an SU accept
commands for remote power-cycling, and to install or update any software on the
system. Each SU should also be able to report status, such as a excessive memory
errors. The physical boundary between the support system and the SU can be
somewhat blurred. If SUs do not provide su�cient support for control and query,
then the support system may be extended to include a system support station (SSS)
that is ``attached'' to the SU. In this way, the support system grows in a scalable
manner with the number of SUs, but the SUs are not required to include support
system functions by design.

The primary purpose of the support system is to mold SUs together into a single
system. Most of the functionality of the support system consists of querying and
controlling SUs. Typically the support system will encompass a superset of the
functionality of any single SU, since it must support all SUs. The support system has
two logical pieces, a system support network and a (usually existing) local infra-
structure.

The system support network provides the ability to con®gure, customize, mon-
itor, maintain, and control the entire Cplant. The simplest hardware realization of a
system support network might be a console and keyboard with physical connections
to every component of the system. This solution, however, is not scalable. A min-
imal hardware realization must include a special component associated with each
SU that serves as a proxy for all interaction with the SU, a system console that
serves as the point of entry for system administrators, and a network connecting SU
components to the console. In general, a broadcast medium is preferable. Fault
tolerance through multiple paths in the network and multiple consoles is also de-
sirable.

The following is an overview of some of the classes of service that the system
support network must provide. Once attached to the system, it must be possible to
con®gure an SU from the system console. It must be possible to monitor the health
of all components in the system and to collect information about the current state of
the system. An SU must be able to inform the system support network about the
resources it provides.
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The information collected above may be used in several ways. A system admin-
istrator must be able to access the system console and execute commands. The al-
location of resources within the system will have to be managed by a distributed
management system. System libraries, such as MPI, can be optimized if given de-
tailed information about the system con®guration. Tools such as debuggers and
performance monitors could make use of some of the functionality of the system
support network.

While access to the system support network by ordinary users is undesirable,
certain parts of the system status may be of interest. For example, a user might wish
to see a representation of available resources and who is using them.

In addition to the system support network, a local infrastructure must be
available to the Cplant. Any computing resource not available at users' desktop is
not really available. Some resources must provide services directly to the user, for
interactive use or batch queue submission. These command interfaces require a
network connection to the service partition. Most users will have workstations and
access to shared ®le servers where code and data are stored. The service partition
should also have a mechanism to access these ®les. Files created by applications
will most likely need to be examined externally, and data may need to be trans-
ferred to external storage systems such as tape archiver (e.g., HPSS) or visuali-
zation servers.

5. Phase I ± Prototype Cplant

During the Fall of 1997, Sandia designed and integrated a 96-node prototype
Cplant. The primary goals were to validate the conceptual design and to create a
reference SU for future additions to the cluster. In addition to these development
goals, the prototype was to be a resource for application development. In order to
ease the transition of users to the prototype, the familiar TFLOPS runtime envi-
ronment was replicated so that application developers could interact with the cluster
in the same manner as the TFLOPS. The following sections outline the hardware
components of the prototype and some of the challenges these components pre-
sented.

5.1. SU

Fig. 2 shows the components of an SU for the prototype machine. Each SU
consisted of two cabinets, each with eight nodes and a power controller. One
cabinet contained the high-speed networking switches, which were laid in the ¯oor
of the cabinet. Each cabinet had eight incoming serial lines from the SSS-0, one to
the serial port of each machine. The SSS-0 machines were also mounted in a
cabinet, with only two SSS-0s per cabinet because of distance limitations discussed
below.
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5.2. Hardware

The ®rst step in constructing the prototype was to develop a set of requirements
and evaluate possible candidates for di�erent components. While other cluster
projects have emphasized achieving low price/performance levels, this goal was not
paramount for the prototype. An e�ort was made to keep costs as low as possible,
but, in some instances, solutions that exhibited more scalability or had higher ab-
solute performance were chosen over solutions that were less expensive.

The ®rst step was to determine the workstation or PC to use as the basis for the
compute partition. After compiling and studying data from benchmarks and real
application codes on di�erent con®gurations of processors, motherboards, clock
rates, memory subsystems, and compilers, we chose the Personal Workstation 433a
from DEC. These machines have the following features: a 433 MHz 21164 Alpha
processor, 192 MB ECC SDRAM, a 2 MB L3 cache, integrated Fast Ethernet, and a
2 GB IDE disk.

The next step was to determine the interconnection fabric for the cluster. At the
start of the project, we decided that Fast Ethernet provided insu�cient bandwidth to
support the needs of our target applications. For the TFLOPS, the bandwidth re-
quirement was at least 1 byte per peak FLOPS rate of a single node. Since the nodes
were capable of delivering 400 MFLOPS, the bandwidth requirement was 400 MB/s.
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Fig. 2. Phase I scalable unit.
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Clearly this level is not possible given the disparity in the performance of commodity
processors and networking hardware. The bandwidth requirements were relaxed to
1 bit per peak FLOPS rate of a single node, or about 100 MB/s. At the time of the
purchase, only Myricom was o�ering a reasonably priced product capable of not
only meeting this performance requirement, but that could also meet the scalability
requirements.

The ability to remote power cycle individual nodes is needed for a cluster of this
size. Power-cycling a node is the best method of returning a misbehaving or non-
responsive node to a known state. Remotely controlling power to each node is es-
pecially desirable for large clusters located in a machine room a great distance from
the developers. The ability to power cycle nodes in a staged fashion also limits the
draw on the amount of power needed to turn groups of machines o� and on again.
After surveying the market of available power controllers, we chose units from
Electronic Energy Control. These power distribution units can control up to
16 machines through a serial line.

Console access to individual nodes is also needed for a cluster of this size. The
ability to access the console of a machine to perform diagnostics and testing, or to
check that a machine boots properly is critical. Each support station contains two
8-port Cyclades serial controller cards.

5.3. Experiences

The Cplant prototype machine has been available for use by application devel-
opers since March 1998. In that time, more than 20 developers have run a wide
variety of applications on the machine. Despite the availability of several larger and
more mainstream platforms at Sandia, we have had as many as six di�erent users
and 50 jobs run on a given day.

Initial performance results on small numbers of nodes of the prototype were
encouraging. Fig. 3 is a comparison of the scaling of CTH [7] (a high-speed shock-
physics package, based on solving Lagrangian equations) on the TFLOPS and the
prototype.4 While the performance was comparable to the TFLOPS, scaling on the
prototype was limited by network performance, and reliability of the message
passing layer prevented CTH from running beyond 16 nodes.

Despite this large decrease in both actual and relative network performance versus
the TFLOPS machine, almost all of Sandia's production and research codes were
ported by the applications developers to the prototype. Codes such as CTH and
Salvo [17] (a wave-equation-based, 3D, prestack, seismic imaging code) are explicitly
designed to run on a wide variety of platforms, including the TFLOPS and networks
of workstations. These codes, as expected, were quickly and easily ported to the
prototype. Other codes, such as MPQuest [22] (a materials structures code) that have
been highly optimized for the TFLOPS, were also ported. These types of codes also

4 The TFLOPS performance numbers were obtained when the machine was composed of 200 MHz

Pentium Pro processors. Grind times are de®ned as CPU time per computational cell per cycle.
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ported quickly, since the prototype mirrored the programming environment on the
TFLOPS.

5.4. Problems identi®ed

Experiences with the prototype machine identi®ed several problems. These
problems were related to the robustness of individual components, redundancy in
the system support network, topologies of the serial and high-performance networks,
and integration of the SUs.

Most problems were related to the fragility of the individual hardware compo-
nents and the redundancy needed to keep the system running in the event of hard-
ware failures. Myrinet switches and power controllers required careful handling to
avoid disconnecting. Portions of the system, for example serial lines, provided in-
su�cient redundancy.

The biggest surprise was the large number of cables we had to handle. This was
unanticipated. Integration was hindered by the large number of cables exiting each
cabinet. Each cabinet had an average of 25 cables leaving the chassis (9 serial,
8 Ethernet, up to 8 Myrinet, 2 power). Reducing the number of cables would allow
easier diagnosis of wiring problems and make maintaining cabinets easier.

The use of the SSS-0 as an attachment point for console serial lines and power
controller serial lines prevented redundant control of these basic functions. Loss of
an SSS-0 resulted in the loss of control over an entire SU. This con®guration also
limited the distance between each SU and the controlling SSS-0.

Early in the process, it became clear that Sandia scientists were not well suited to
integration. Such self-integration may make sense for small systems, but the com-
mon use of systems of this magnitude will require that integration be performed by
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groups with the appropriate expertise. Sandia has subsequently encouraged the es-
tablishment of companies who specialize in this type of integration.

6. Phase II ± Production Cplant

During the Fall of 1998, Sandia re-evaluated the hardware choices of the pro-
totype machine, and contracted with DEC (now Compaq Computer Corporation) to
integrate and deliver a 400-node Cplant system.

While the original design of an SU was sound, the hardware used in the prototype
was inadequate to support several hundred nodes.
· The Myrinet switches in the prototype machine were not rack mountable and used

delicate 10 ft SAN ribbon cables. The new switches are rack mounted and contain
8 ports for LAN connectors and 8 ports for SAN connectors. The more rugged
and longer LAN cables allow for a greater distance between cabinets and are more
durable.

· The new power controllers are also rack mountable and are controlled via Ether-
net rather than serially. Ethernet allows for control from longer distances and
eliminates the need for multiple serial lines entering each cabinet.

· The serial lines from each machine within a cabinet for console access are connect-
ed to an Ethernet terminal server mounted inside the cabinet. This layout elimi-
nates the need for multiple serial lines entering the cabinet and allows for
greater distances between the controlling SSS-0 machine and the SU.

· Since the Myrinet switch, the power controllers, and the terminal server all have
Ethernet capability, a rack mounted Ethernet hub was placed in every cabinet.

· The individual nodes were also upgraded. The new nodes are 500 MHz Miatas
with an upgraded PCI chipset that ®xes some of the problems with the older chip-
set and signi®cantly improves PCI performance. The new compute node machines
are also diskless, to increase reliability and to better enable switching between clas-
si®ed and unclassi®ed computing modes.
Fig. 4 shows the components of an SU for this new machine. There are many

bene®ts of the new cabinet design. Placement of cabinets is more ¯exible, with
increased allowable distance and reduced restrictions on the position of the SSS-0
relative to the SU it controls. The cabinets for the SSS-0 machines can hold eight
machines and are identical to the compute nodes cabinets without Myrinet
switches and cables. This increased ¯exibility allows for a more scalable topology
and avoids many of the problems that made the prototype system sensitive to
failures. The internal cabinet layout has signi®cantly fewer cables leaving a cabinet.
Only a single Ethernet cable for the cabinet hub, a single power cable for the
cabinet power distribution unit, and eight Myrinet LAN cables leave a cabinet.
Reducing the number of cables increases the stability of the cabinets and makes
testing and diagnostics easier. The internal workings of each cabinet can be tested
by connecting an Ethernet line to a laptop computer running the SSS-0 mainte-
nance and diagnostic software. This method of evaluating a cabinet is convenient
for installation and o�-line testing. When integrated into the system, these same
functions are available through the controlling SSS-0. The redesigned internal
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cabinet layout also increases the reliability of the system, since the dependence on
serial lines has been reduced. The terminal server that controls the console for the
nodes in a cabinet can be reached by multiple machines. If the SSS-0 responsible
for a particular cabinet goes down, the terminal server can still be reached from
other SSS-0 nodes. The same is true for the power control units. Only the failure
of the relatively well studied, robust, common components ± the Ethernet hub, the
terminal server, or the power control units ± results in loss of management control
for a cabinet.

7. Cplant management con®guration

The management con®guration of Cplant is modeled after the TFLOPS RAS
system, where a dedicated network of processors is used to monitor the health of the
system. The administrative software is divided into three parts: discovery of new
hardware, generation of con®guration ®les, and operations performed on devices in
the system. Our con®guration management software handles all three of these as-
pects with a minimum of user intervention. In order to provide a consistent interface
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and ease of updating, information regarding the layout and composition of the
machine is consolidated in a single database. All aspects of the con®guration are
re¯ected in this central database.

7.1. Hardware discovery

When a device is added to the system or a new unit is swapped in place of a failed
device, a con®gurator probes the new device to discover its MAC address and any
other salient details of the unit. After adding this information to the central data-
base, several con®guration ®les are updated to re¯ect this change. For instance, the
/etc/bootptab on the device's boot host is updated with the MAC address of the new
device. /etc/hosts on all hosts will have the new device added and properly quali®ed
as well. Myrinet maps are also updated. This update is tedious to do by hand and
error prone due to the necessary duplication of information in disparate locations
across the system.

The new device is also con®gured to become aware of its location in the system
and to work with the other units. Terminal servers, for instance, require several
parameters to be changed per port. SSS-0 devices are even more challenging to do by
hand, since an entire Linux installation is required. All of this would be di�cult to
remember for every device type in the system and nearly impossible to do in a
reasonable length of time should the entire machine require a recon®guration.

Lastly, the database supplies the con®guration information to tools that operate
on the devices in the system. The power control and console tools query the database
to retrieve information regarding the physical rack and unit of a device to determine
which power controller or terminal server handles a given node.

Our implementation is a collection of Perl scripts that build the con®guration
database in memory and operate on devices, groups and racks represented as Perl
objects. Each object has methods related to system management: discover� �,
configure� �, power� �, console� �, and so on. The rules for generating hostnames,
IP address assignments and such are handled by user-supplied templates. The system
is as generic as possible to allow for design changes without rewriting the con®gu-
ration code. It is also fairly easy to move to new hardware systems or layouts without
requiring much rewriting ± new power controllers or di�erent terminal servers could
be used side-by-side with the old hardware as soon as con®guration scripts for the
new devices were written.

7.2. Administrative operations

Administrative operations for Cplant are implemented as shell scripts. They in-
clude functions to update the system software, boot nodes, and get the status of
nodes. All of these functions are hierarchical and can be used on individual nodes, a
scalable unit, or a virtual machine (VM). A VM in this context is an abstraction used
to represent a set nodes that run the same set of system software. A VM consists of
one or more SUs.
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The SSS-1 machine contains a master ®le that maps VMs to SUs. The entire
machine can be partitioned to run di�erent versions of system software on di�erent
SUs. For example, the system can be con®gured so that half of the nodes boot and
run system software from a development VM and the other half use a production
release of system software. All nodes within an SU must use the same distribution of
software.

There are three scripts that are used to update the system software distribution for
a set of SUs. The update-vm script takes a VM name as an argument, searches the
master ®le, and uses the UNIX remote distribution (rdist) utility to copy the system
software from the SSS-1 machine to the appropriate SSS-0 machine. rdist compares
the existing ®les the those that are to be distributed and only updates ®les that have
changed. This fast method of updating of system software is valuable in a devel-
opment environment where updates occur frequently. The system software is dis-
tributed from the SSS-0s to the diskless nodes in the SU through NFS mounting of
the root ®le system.

There are three scripts that boot nodes, one for each level in the hierarchy. The
boot-vm script takes a VM name as an argument, and uses rsh to run a boot-su
script on the SSS-0s of the SUs that are contained in the given VM. The boot-su
script uses the boot-node script, which in turn uses the hardware discovery Perl
script to power cycle the node.

There are also scripts that check the status of all the nodes in the cluster. These
scripts status-vm, status-su, and status-node using the UNIX finger

utility to determine whether a machine is responsive. In the future we hope to
extend these utilities to a more exhaustive set of utilities that will determine the
status of the node as well as the software components and network interface
components.

Hosts are named in a modular manner. For example, the hostname of node 14 in
SU 2 is c-14. SU-2, and can be reached via rlogin or telnet from the SSS-1. The
console for this machine can be accessed via telnet to the hostname console-c-
14.SU-2. When logged into an SSS-0 the SU quali®er may be left o� of the host-
name. This naming scheme is also used for the SSS-0 machines. For example, the
third SSS-0 is named z-2, and the hostname for the console of that machine is
console-z-2. This simple naming scheme is important for e�ciently diagnosing and
maintaining the cluster.

7.3. Performance

From an administrative point of view, two important measures are the time re-
quired to update the system software, and the time required to boot the system.
Upgrading the system software involves running the update-vm script. This pro-
cess takes on the order of 10 s for a single SU and on the order of 5 min for the entire
24 SUs. When an SU is booted, the individual nodes are booted in sequence to avoid
potential power surges and to avoid disk con¯icts that would arise during the
BOOTP process. Because the nodes in an SU are diskless, they do not need to
perform a ®le system check, which greatly reduces the amount of time required to
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boot. It takes on the order of 1 min to boot all 16 nodes in an SU. The individual
SUs are booted in sequence, and it takes less than 25 min to boot the entire cluster.
The SUs could be booted in parallel to save time; however, sequential booting
simpli®es reading the boot messsages from the scripts as they are produced. As the
machine grows larger, our scripts will be modi®ed to support a parallel boot, and
boot messages will be sorted on the SSS-1.

8. Cplant software

Linux was the preferred operating system from the start. The value of Linux in
building commodity-based clusters has been well established by the Beowulf-class
machines [24]. Linux provides all of the basic functionality at extremely low cost, and
the loadable module feature facilitates e�cient development and debugging. Most
importantly, the source code is available, extensions for high-performance can be
developed, and support from the worldwide Linux community can be leveraged.

Once we determined the operating system, we need to provide a message passing
layer that could be used by the applications, the runtime environment, and ®le I/O.
The scalable runtime environment provides a way to launch parallel applications and
provide the ®le I/O needed during execution. The compile environment is based on
the Digital UNIX compilers and libraries. The current ®le I/O facilities are very
limited and will be a focus of future work.

8.1. High-performance message passing layer

The key piece of OS/middleware necessary for high-performance is a message
passing layer. This projects builds on the highly successful message passing layer for
the TFLOPS, Portals [21]. An implementation of Portals in Linux was already under
development as part of the Uni®ed Kernel [10] project in which Linux was run on
nodes of the TFLOPS. However, this implementation was designed to run over
Ethernet rather than Myrinet. Alternatively, there were several choices for low-level
message passing layers on top of Myrinet available from commercial vendors as well
as research institutions [9,11,13±15,18]. Portals were chosen for Cplant because most
of the alternatives lacked the ability to support multiple processes per node, MPI
support, or support for Alpha Linux.

Selection of Portals in Linux provided three additional bene®ts. We re-used of
much of the code that had been developed for the TFLOPS and the Uni®ed Kernel
project, including a high-performance MPI library [2,3] that had been validated by
Intel. We were able to begin code development on Portals over Ethernet before
obtaining Myrinet hardware. Portals provided a familiar low-level message passing
interface to which many of the Cplant system tools and libraries had been written,
and provided a layer of abstraction that can adapt to emerging network technolo-
gies.

The current implementation of Portals for Cplant is composed of a kernel module
and a Myrinet Control Program (MCP) that runs on the network interface card. To
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simplify porting the semantics of Portals, we have chosen a high latency path
through the kernel module. When a message arrives, the MCP interrupts the host
processor to determine where in user space the message should be delivered. While
this interrupt and kernel processing of every message adds signi®cant overhead, it
enabled us to continue development of other runtime components while we con-
sidered a redesign of the Portals interface.

8.2. Scalable runtime environment

A key feature of Cplant is a user environment nearly identical to the TFLOPS
user environment. We wanted the machine to be familiar to users who had experi-
ence with the Paragon and TFLOPS. The following describes some tools that were
carried from these earlier machines into the Cplant environment.

The application loader, yod, for Cplant is essentially identical to its counterpart
on the TFLOPS machine. Yod accepts arguments that tell it how many nodes are
being requested and the executable(s) to be launched. It handles UNIX standard I/O
in the same manner as its TFLOPS counterpart. It also redirects UNIX signals sent
to it to the compute node processes. Sending a SIGKILL signal to yod will kill the
compute node processes.

The Process Control Thread (PCT), runs on each compute node. This daemon
process is responsible for controlling the resources on a compute node.5 It handles
starting and terminating the user process, redirection of UNIX signals to the user
process, and provides the user process with the environment needed to be part of an
application.

Bebopd is a daemon process that runs in the service partition. It handles the al-
location and status of the available compute nodes. It keeps track of which nodes are
available, which nodes are allocated, and to whom the nodes are allocated. Bebopd is
essentially the resource manager for all of the compute nodes in the system.

We have two utilities for discovering the status of the machine: pingd and show-
mesh. Pingd displays free nodes, allocated nodes, on which nodes a job is running,
how long the job has been running, and who owns the job. Pingd displays a single
line of output for every node in the cluster. While this non-scalable solution works
well for users running X-terminals with su�cient history to scroll through, it can be
tedious. Showmesh is a simple Perl script that parses the output of pingd and for-
mats it in a display closely resembling the TFLOPS showmesh utility. It can display
the status of several thousand nodes in a limited amount of textual space. Typically
users will run pingd or showmesh to discover the number of available nodes and to
verify that a job has been launched and is running.

Fig. 5 presents a sample output of the showmesh utility for Cplant. In this case,
the output shows the running of a 324-node job just after it has been launched.

5 The PCT is somewhat of a misnomer due to the fact that the equivalent entity for the operating system

on the TFLOPS machine is a thread rather than a heavyweight process.
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An additional component of the runtime environment gets linked into an ap-
plication through a set of system libraries. These libraries redirect most UNIX
system calls back to the controlling yod process. This mechanism allows the en-
vironment in which the yod process is running to be re¯ected to the compute node
processes. For example, I/O calls, such as open( ), and standard library calls,
such as getpid( ), are linked into the application as Remote Procedure Calls

Fig. 5. Sample showmesh output.
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(RPC) calls to yod. In this way, the transparency of the remote processes is not
compromised, and the appearance of a single environment is given to all processes
in the application.

In addition to familiarity, the TFLOPS environment had proven to be scalable.
Communication between PCTs participating in loading a job or disseminating sig-
nals is implemented as a spanning tree to signi®cantly decrease the amount of time
needed to broadcast information to all nodes being used by the job. Since all in-
formation concerning the user's environment is given to the PCTs, and since yod
handles most system calls, there is no need to have a complete environment for every
user on every node. Only service nodes require a complete user environment. This
scheme signi®cantly decreases the number of nodes that NFS mount user home
directories and signi®cantly decreases the amount of work needed to administer the
machine.

8.3. Compile environment

The compile environment for the prototype machine is a ``cross'' compile envi-
ronment. AXP Linux is almost binary compatible with executables produced by
Digital UNIX compilers. Since Digital UNIX compilers are more mature than the
GNU AXP Linux compilers, it was highly desirable to be able to compile compute
node applications with the high-performance Digital UNIX compilers and libraries.
The compile environment for the prototype system builds statically linked Digital
UNIX ECOFF executables that then run under AXP Linux. In addition to the high-
performance compilers and libraries, using the Digital UNIX compilers helps to
avoid requiring application developers to construct a new build environment spe-
ci®cally for GNU compilers and Linux. A large percentage of current Sandia ap-
plications already have build environments for the Digital UNIX compilers. Most of
all the FORTRAN codes require the Cray pointer extensions that the GNU
FORTRAN compiler does not yet support.

The prototype compilers are shell scripts that call the corresponding Digital
UNIX compiler with the appropriate paths to ®nd the system libraries and header
®les. The compilers are available in a central location on the LAN so that any
user with a Digital UNIX machine can access them. Additionally, there is a
dedicated compile server that all users can access. The compile environment has
also been distributed to users who do not have direct access to the compile server
so that they can build executables on their own Digital UNIX machine and then
move these executables to the prototype machine. This results in a high-perfor-
mance, ¯exible compile environment to which the TFLOPS users have become
accustomed.

8.4. File I/O

Currently all application ®le I/O is funneled through the yod process running in
the service partition. This strategy creates a bottleneck that signi®cantly reduces ®le
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I/O performance. For the Paragon and TFLOPS, Intel's Parallel File System (PFS)
was used for high-performance ®le I/O. We are currently implementing two short-
term approaches to o�oading ®le I/O work from yod. These approaches simply
redirect the I/O operations to other proxy processes (called fyods, or ®le yods)
running in the I/O partition. We are also designing and developing a parallel ®le
system as a long-term solution to high-performance ®le I/O.

9. Benchmark performance results

In order to assess the scalability of the cluster, we have run several standard
benchmarks. Fig. 6 shows the performance of seven of the eight codes in the NAS
Parallel Benchmark suite version 2.3 Class B. In spite of the poor communication
substructure, these results are encouraging.

In addition to the NAS benchmarks, we have run the MPLINPACK benchmark
on 324 nodes with a 62 000 element square matrix, and it achieved 110 GFLOPS.
This number would place the cluster in the top 50 of the November 1998 list of the
Top 500 supercomputers in the world.

While application performance is important, scalability of the runtime tools is
critical for a large-scale machine. To demonstrate the scalability of the Cplant
runtime environment, we measured the time to load the SP benchmark from the
NAS benchmark suite. Fig. 7 presents the job load time from 36 nodes up to
324 nodes. Loading a job includes the time it takes to copy the executable image into

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200 250 300 350

To
ta

l M
flo

ps

Number of nodes

EP
CG
MG
LU
FT
SP
BT

Fig. 6. NAS parallel benchmark performance.

262 R. Brightwell et al. / Parallel Computing 26 (2000) 243±266



the memory of all of the nodes in the job, distribute the user's environment, and
synchronize the application processes. Notice that the load time does not increase
signi®cantly as the number of nodes increases. This performance is due to the binary
fanout tree that yod and the PCT's use for application loading.

10. Future directions

We have de®ned a new set of requirements for a system-level message passing
interface speci®cation. Our initial experience with Portals in Linux identi®ed areas
where performance could be improved and functionality could be extended. The
current interface to Portals does not allow for a true operating system bypass
mechanism. This new speci®cation allows for more ¯exibility in the placement of
message passing data structures, that in turn will help to decouple the compute node
processor from the network.

We have also modi®ed the Linux kernel to increase communication performance.
We have the ability to run an application process in physically contiguous regions of
memory. Previously, application message bu�ers spanned several regions of virtual
memory that were likely to be physically discontiguous. Physically contiguous
message passing bu�ers allow for a region of memory to be represented by a single
address/length pair on the network interface.

We are also working on a distributed resources architecture for the runtime tools.
This will allow the di�erent software parts of the runtime system to work more
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e�ectively and scalably. For example, the current prototype has a single resource
allocation daemon. If this process faults, the entire machine is unusable. In the new
architecture, the resource allocation processes will be distributed throughout the
service partition so that a failure will only a�ect a small portion of the machine.

11. Summary

In this paper, we have presented our approach to building a large-scale, mas-
sively parallel computing resource from commodity components. We have identi-
®ed several areas in which current cluster technology falls short of attaining the
level of performance, scalability, and maintainability necessary to compete directly
with large MPP systems. Conversely, we have also identi®ed several areas where
large MPP systems fall short in adapting to evolving commodity technologies. The
Cplant concept is a hybrid approach that merges the knowledge and research of
commodity cluster projects with Sandia's experience and expertise in large-scale
MPP systems.

We have presented our experiences with two generations of Cplant hardware, and
shown performance results for the important administrative functions that are
needed to manage a large-scale cluster. We have also shown scaling results for the
Cplant runtime environment as well as performance data for several benchmarks
and signi®cant application codes.
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